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Term Abbreviation 

Urban Heat Island UHI 

Surface Urban Heat Island SUHI 

Land surface temperature LST 

Land surface emissivity LSE 

Top of the atmosphere  TOA 

Normalized Difference Vegetation Index NDVI 
 

Infrared nomenclature Abbreviation Wavelength Temperature 

Near-infrared NIR 0.75–1.4 μm 3864– 2070 K 3591–1797 °C 

Short-wavelength infrared SWIR 1.4–3 μm 2070–966 K 1797–693 °C 

Mid-wavelength infrared MWIR 3–8 μm 966–362 K 693–89 °C 

Long-wavelength or thermal infrared  LWIR / TIR 8–15 μm 362–193 K 89 – (−80 °C) 
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1. Introduction and aim of the document  

Surface temperatures are of prime importance to the study of urban climate (J. A. Voogt & Oke, 2003). The retrieval 

of such information is a challenging task since the surface temperature of the urban skin varies considerably - both 

in time and space- due to differences in the energy balance of the individual facets.  

Thermal remote sensing (RS) is a valuable information source in this regard because it provides a non-contact 

method to obtain spatialized thermal information of a surface at specific times, with various spatial and temporal 

resolutions. In urban settings, the RS quantification of surface temperature is tricky due to two factors. First, deriving 

actual temperatures from at-sensor radiances requires several corrections, which depend on hard-to-obtain data 

about urban surfaces (geometry, material properties, and boundary conditions). Second, as remote sensing is a view-

dependent technique, capturing information about the convoluted urban surface can be tricky. This report aims to 

overview how satellite, airborne, and ground-based RS observations address these issues.   

Satellite thermal infrared imagery (TIR), initially developed for military purposes, has a wide range of civil 

applications within different fields today (e.g., (Jose A. Sobrino et al., 2016) cited more than 30). Since the early ‘70s 

(Rao, 1972), this technique has been routinely used to retrieve land surface temperature for investigating multiple 

aspects of urban climates. Three central topics have been the study of urban surface energy balances, the 

correlation between surface characteristics and thermal patterns, and the urban heat island phenomenon (J. A. 

Voogt & Oke, 2003). Section 2 outlines the main findings and research gaps in the latter field, one of the most active 

areas in climate research.  

Over the last 50 years, satellite TIR remote sensing has decisively contributed to the understanding of climate 

dynamics at multiple scales. The findings of this discipline have had, though, a limited impact on the construction 

of real cities (Mills et al., 2010). One reason is that satellite thermography is still too coarse – both in time and space 

- to provide practical guidance for architectural interventions (Section 3). Another reason is that satellite datasets 

are essentially two-dimensional while cities are three-dimensional by nature. Since the ‘90s (J. a. Voogt & Oke, 

1997), climate researchers have implemented alternative RS approaches (airplane, drone, vehicle, platform, 

handheld cameras) to provide closer observations of the city from different view angles, to collect thermal data of 

the entire urban skin (Section 4).   

Research using satellite TIR data has also been very prolific from the methodologic point of view. A significant 

number of approaches have been developed to retrieve surface temperatures from satellite data using various 

methods to correct the emissivity and atmospheric effects (Z. L. Li, Tang, et al., 2013). Section 5 provides an overview 

of these methods and an example of how airborne urban studies inherited some of this knowledge. For several 

reasons, satellite algorithms are not directly applicable to ground-based thermography (Section 6). Yet, their 

approaches provide some worth-exploring paths to face the challenges of ground-based observations, key tools for 

the comprehension of urban microclimates (Section 7).  
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2. Satellite remote sensing for SUHI observations  

Traditionally, the Urban Heat Island (UHI) refers to the differences in air temperature between urban and rural areas 

using pairs of in situ climatology data. The term Surface Urban Heat Island (SUHI) is used to distinguish UHIs 

measured using surface temperatures. SUHI has been widely used as a surrogate index to study the heat island effect 

indirectly. 

Though first satellite-based observations of the SUHI phenomenon date back to the early seventies in US (Rao, 1972), 

this research field was not highly active until 2005. From then on, publications started to grow exponentially for 

three reasons (Zhou et al., 2019). First, a growing interest in urban climates due to rapid urbanization; second, the 

technical advances concerning remote sensing and computing power; third, the increase in freely available data. The 

use of satellite TIR imagery for UHI studies has multiple advantages, but this technique also presents significant 

limitations, regarding mainly the coverage of datasets and methodological constraints (Table 1).  

 

Advantages  Limitations 

Continuous spatial coverage compared to onsite data.  
Data acquisition times of sun-synchronous satellites usually 
do not coincide with the time of day where the SUHI is at a 
minimum or maximum.  

Provides data where no systematic onsite measurements are 
available and augments where they are.   The most widely used satellite for SUHI detection (i.e., 

Landsat) only has daytime data. 
Simultaneous observations of LST, surface emissivity, and 
land cover from various satellites (e.g., Landsat/TM, ETM+, 
OLI & TIRS, MODIS, VIIRS, AVHRR). 

 Optical sensors cannot penetrate clouds or vegetative cover, 
which can lead to data gaps or a decrease in data utility. 

Global, consistent, data coverage from many satellites.  
The accuracy of land surface temperature (LST) estimates 
depends strongly on corrections for atmospheric effects and 
an accurate estimate of surface emissivity. 

Availability of open-source data.  Radiances received by sensors are influenced by the sensor-
viewing angle. 

  It is difficult to obtain high spectral, spatial, and temporal 
resolution with the same instrument. 

  A large amount of data exists in various spatial and temporal 
resolutions, file formats, sizes, and from multiple sources. 

 

Table 1. Benefits and limitations of satellite TIR remote sensing for UHI studies. 
(Source: https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf) 

 

Over the last fifty years, the use of satellite TIR data allowed for developing an extensive SUHI research body. Here 

we present a summary of the main findings together with still controversial aspects:  

• The primary cause of SUHI is the change in the urban surface energy balance after replacing natural land 

with artificial surfaces (Arnfield, 2003). SUHI drivers are different, though, during the day and night. A 

reduction in reflected solar radiation and latent heat flux drives the daytime SUHI. In contrast, the nighttime 

SUHI is due to larger heat storage during the day, released during the night.  

• The formation of SUHIs - and their intensity - depends on multiple factors, including climate, population 

density, city size, landscape structure (materials and distribution), and the level of anthropogenic heat 

release. The strong interactions among different variables pose serious, multi-collinearity problems that 

remain poorly understood (Zhou et al., 2019).  

https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf
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• The background climate is usually considered the ultimate factor that shapes the spatiotemporal 

differences of SUHIs among cities. In general, the daytime SUHI is larger in humid-hot cities than in their 

cold-drier counterparts, while the opposite is true during the nighttime (Zhou et al., 2019). The SUHI 

intensity differs greatly by season, being higher in winter than in summer during the night and the opposite 

during the day for most cities (Zhou, Zhao, Liu, Zhang, & Zhu, 2014). Notice that the formation of cool islands 

is also possible, like in some arid cities during the summer season in the daytime (Lazzarini, Molini, Marpu, 

Ouarda, & Ghedira, 2015; Manoli et al., 2019).  

• Many studies have used TIR remote sensing to investigate the relationship between surface characteristics 

and SUHI variations. There is a consensus in the literature that land cover/land use and their changes are 

one of the main causes of UHI formation, driving both urban-rural and intra-urban temperature differences 

(Deilami, Kamruzzaman, & Liu, 2018). The amount of impervious surface area seems to be the key variable 

in explaining UHI variation. Increasing the ISA increases the intensity of UHI, whereas the reverse is true for 

urban vegetation and water bodies (Lu & Weng, 2006; Peng, Xie, Liu, & Ma, 2016). Bare soil areas have 

ambiguous impacts on SUHI, with studies reporting both positive and negative correlations (Zhou et al., 

2019).  

• UHI formation depends on not only the landscape composition (material) but also its spatial configuration 

(distribution). Though it varies among cities, landscape composition usually affects the thermal 

environment more than does spatial configuration (Peng et al., 2016). Still, urban form has a non-negligible 

impact on SUHI and UHI phenomena (Berger et al., 2017; Yin, Yuan, Lu, Huang, & Liu, 2018). Sensitive urban 

planning seems to be an effective mitigation strategy (Yin et al., 2018), which requires the management of 

common urban metrics such as building density, sky view factor (SVF), and floor area ratio (FAR).  

• The relationship between surface and atmospheric UHIs has become one of the central topics of SUHI 

research. This link is not straightforward since both phenomena show opposing behaviors: SUHI peaks 

during the day in the summer and reaches its minimum at night; the reverse is the case for UHI. Therefore, 

despite the efforts, the published SUHI-UHI correlations remain empirical (Oke, Mills, Christen, & Voogt, 

2017). A leading factor contributing to these uncertainties is that many SUHI analyses rely on very limited 

datasets (e.g., one image/season or year). The current availability of long-term free data should trigger 

research using extensive image datasets or time-series to increase the findings' robustness. Another factor 

is that satellite data only allow for 2D studies, while air temperatures are affected by the complete urban 

surface (J. a. Voogt & Oke, 1997). Accounting for these three-dimensional effects allows for improving the 

interpretations of the SUHI magnitude and surface-air temperature differences (Oke et al., 2017).  

Despite the substantial advances in SUHI comprehension over the last decades, a recent and exhaustive review on 

the field revealed that the studies are still strongly biased (Zhou et al. 2019). There are research gaps regarding:  

• Geographic location. Until now, research has mainly focused on Asia (China), followed by North America 

(US) and Europe (France, Germany). In contrast, investigations in Central and South America, Africa, and 

Oceania are still scarce. Due to their high urbanization potentials and/or climate sensitivity, there is a need 

for more SUHI research in Africa, South America, and India.  
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• Time of day. The majority of the SUHI research concentrated on a single time during daytime, while few 

night-and-day studies. Data limitation contributes to this research gap in two senses. On the one hand, the 

most widely used satellite for SUHI detection only has daytime data (i.e., Landsat). On the other, there is a 

significant missing data problem due to cloud cover.  

• Season. Over half of the literature focused on the SUHI in an individual season, particularly summer, as the 

moment when the most intense effects appear. In contrast, few studies investigated the SUHI in all seasons. 

There is a need for more comprehensive evaluations on day/night SUHIs across different seasons since their 

intensity and underlying mechanisms vary dramatically through the year. Particularly, nighttime seasonal 

SUHI patterns remain controversial to date, existing studies reporting more intensive effects in the summer 

than in the winter and vice versa.  

• Research foci. A central question has been the study of SUHI variability, especially based on ASTER 

(Baldridge et al. 2009) and Landsat data. Most studies have focused on the variations at the local scale 

rather than at the regional/global scale. Comparisons among cities with similar climates - still scarce 

compared with intra-urban studies - could help to guide UHI mitigation strategies. Researchers have also 

investigated the link between SUHI and urban form. However, these studies systematically overlook the 3D 

nature of cities, being predominant works using satellite TIR data and 2D urban form metrics (Yin et al., 

2018).   
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3. Popularity and scale issues of satellite sensors for urban thermal studies  

Urban thermal studies have relied on satellite data from more than ten different onboard sensors (see their main 

features in Annex 2). To date, the main data providers for thermal urban studies have been, by far, Landsat and 

MODIS satellites (Zhou et al., 2019). The use of ASTER imagery has been increasing since 2016 (date of free-cost 

release), and it is now the third most frequent provider. Figure 1 summarizes the reasons for the popularity of these 

three data sources. Less frequently used satellites are AVHRR, SEVIRI, GOES, HCMM, HJ-1B, AATSR, ITOS-1, COMS, 

FY-2F, AMSR-E, or AMSR. Notice that temperature data from different satellites may mismatch, due to the 

differences not only in the sensor features (e.g., viewing angles) but also in the retrieval algorithm and the surface 

properties (Trigo, Monteiro, Olesen, & Kabsch, 2008).  

 
Figure 1. The three most popular sensors for SUHI studies. 

 

Despite the substantial body of knowledge on urban climates developed over the past decades, there is little 

evidence that this knowledge is incorporated into urban planning and design practice (Mills et al., 2010). Satellite-

derived UHI studies are a good example of this issue. To foster the utility of space-based data in the field of urban 

applications, the European Spatial Agency conducted the project ‘Urban heat islands and urban 

thermography’ (UHI&UT) between 2008 and 2011. The aim was to develop a set of satellite/airborne-based services 

to help municipalities to understand and predict UHI phenomena to better prevent/reduce their impacts during 

summer heatwaves and implement energy efficiency measures. The study involved ten cities, with climates and 

layouts representative of many urban areas across Europe: Athens, Bari, Brussels, Budapest, Lisbon, London, Madrid, 

Paris, Seville, and Thessaloniki. For further information on the project, see (Viel, Ceriola, and Ridder 2012).  

An original contribution of this work was the surveys conducted on potential users of urban TIR imagery from 

different communities, such as urban engineering departments, civil protection departments, cartography units, 

meteorological services, local energy, environmental, and sustainability agencies. Users were questioned about 

applications of TIR they would be interested in and the desirable spatial, temporal, and spectral resolutions required 

for their purposes. Based on their answers, five application fields emerged (Figure 2a): Meteorological services, 

Emergencies, Environmental Quality, Risk analysis, Urban Planning and Energy efficiency.   
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Figure 2. Required spatiotemporal resolution of TIR sensors for different application fields (a). Planned sensors (blue dots) and 
gaps for future devices (red boxes) (b). 

 

Users’ answers show that in two fields related to architecture interventions – energy efficiency and urban planning 

– the most important parameter is spatial resolution. Imagery products with too coarse spatial resolutions (>30m) 

make city shapes disappear, and users’ observations are hence no longer useful for urban designers (Yin et al., 2018). 

Figure 3 summarizes the main applications and technical requirements within these two fields.   

 
Figure 3. Summary of users’ requirements for TIR products in the fields of energy efficiency and urban planning. 
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To ensure simultaneously their utility for energy efficiency and urban planning purposes, satellite sensors should 

meet the following requirements (Viel, Ceriola, & Ridder, 2012):     

- Spatial resolution: ideally of 1m, and 15 m at most (Figure 4). 

- Observation time: 2 images per day with a large amplitude (> 6 h) and a minimal revisit time of a week.  

- Spectral resolution: 4 TIR bands at least to apply algorithms to retrieve emissivity (8.5/9.0/9.5/10 µm). 

Ideally, sensors should also include 3 SWIR (1.5/2.1/2.5 µm) and 1 MIR (3.7 µm) bands to provide other 

products required by the users (e.g., vegetation index) or calculate other algorithms. 

. 
Figure 4. Example of IR imagery at different spatial resolutions. Source: (Viel et al., 2012) 

 

The UHI&UT project concluded that none of the existing or planned satellite sensors at that time (blue dots) could 

meet the requirements above. Based on this analysis, this work provided recommendations for future ad-hoc TIR 

missions and pointed out two priority gaps (red boxes, Figure 2b). Some satellite remote sensing products meet the 

recommended spatiotemporal resolutions for architectural purposes (e.g., Quick Bird). However, they only cover 

the visible and near-infrared wavelengths and need to be combined with TIR datasets with coarser resolutions, 

unavoidably leading to scaling issues (Xu et al., 2017).  

Airborne campaigns provide an alternative to overcome the low resolution of satellite thermography. IR cameras 

on helicopters or small planes have been a traditional tool in urban climate studies since the 90s. Voogt and Oke 

(2003) give a dozen of examples in this regard. More recent iconic campaigns in the urban climate field also chose 

this option: ESCOMPTE in Marseille (Mestayer et al., 2005), CAPITOUL in Toulouse (Lagouarde et al., 2010; Lagouarde 

& Irvine, 2008), TOPEUM in Nicosia (Neophytou et al., 2011), and DESIREX in Madrid (J A Sobrino et al., 2009). From 

these flying altitudes, it is possible to achieve hyperspectral images with spatial resolutions of few meters (~4-10 m) 

at on-demand temporal resolutions (e.g., twice a day). Though suitable for studying some climatic processes (Lo, 

Quattrochi, & Luvall, 1997), this imagery is still too coarse for guiding architectural interventions, and repeated aerial 

flights may be economically unaffordable.  
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Recent advances in drones and radiometric thermal cameras are contributing to overcome these limitations. These 

technologies make it possible to retrieve urban surface temperatures on-demand at very high spatial resolutions 

(<1m), with reasonable costs (Gaitani, Burud, Thiis, & Santamouris, 2017; Naughton & McDonald, 2019; Rakha & 

Gorodetsky, 2018). Combining IR imagery with VIS and NIR data, it is possible to map some physical properties of 

urban areas, such as NDVI, albedo, and apparent thermal inertia (Figure 5). These derived properties may yield 

valuable information for the decision-making of micro-climatic design and the improvement of urban simulation 

models (Antoniou, Montazeri, Neophytou, & Blocken, 2019; Fabbri & Costanzo, 2020). 

 

 
Figure 5. Visual image, surface temperature, albedo, NDVI, and apparent thermal inertia of the urban area surveyed with the 

drone in (Naughton & McDonald, 2019), from left to right.   
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4. Attempts to study the true temperature of the 3D urban surface 

As such, satellite remote sensing is a two-dimensional source of information about cities. Satellites provide an 

effective technique to collect extensive thermal data about roofs, roads, water bodies, and other urban horizontal 

surfaces. In contrast, vertical surfaces, such as façades, are entirely missing in satellite surveys from nadir views or 

systematically biased from off-nadir sensors (J. A. Voogt & Oke, 1998). The grazing acquisition angles lead to 

misrepresentations due to the under-sampling of vertical surfaces and the increase of thermal reflections. Another 

handicap of satellite views are hidden surfaces, masked by other urban elements (e.g., textile or tree canopies).  

All these issues remain unsolved in classical airborne studies using airplanes and helicopters. Recently drones have 

opened up the possibility of sampling both vertical and horizontal surfaces from near frontal views to obtain high-

resolution hyperspectral images (Rakha & Gorodetsky, 2018). Thanks to photogrammetric techniques, it is possible 

to create detailed 3D models incorporating geometrical, optical, and thermal information, like the one in Figure 6. 

So far, such drone application is only feasible over individual buildings or non-urban areas (e.g., terrains, industrial 

facilities) due to legal constraints to flights in most cities and other operational problems. Miniaturization of drones 

and thermal cameras may allow overcoming these limitations in the foreseeable future. 

 
Figure 6. Infrared and RGB models generated using 3D photogrammetry using Pix4D and Rhino3D CAD modeling software. 

Elaborated from: (Rakha & Gorodetsky, 2018).  
 

As shown, aerial imagery alone cannot provide information about the temperature of the entire urban skin. Given 

the crucial role of this parameter for urban climate at different scales, there have been some attempts to study the 

complete urban surface temperatures over the last two decades.  

Early studies opted for the integration of several datasets collected by different remote sensing devices. Voogt and 

Oke (1997) carried out pioneer work by combining airborne observations (nadir and 45° off-nadir) with façade data 

obtained from vehicle traverses. The significant differences between the complete and airborne estimates of urban 

surface temperatures during daytime highlighted the need for further research on the subject. Nevertheless, this 

multi-device approach raised inconsistency issues between datasets due to the difference in resolution, calibration, 

or device timing (Hartz, Prashad, Hedquist, Golden, & Brazel, 2006). 
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Later works opted for perspective views from a single device, where post-processing and analysis tasks were more 

intuitive and less time-consuming. The most common method to shoot IR perspectives is to place a thermal camera 

on the top of high-rise buildings or tall platforms (Adderley, Christen, & Voogt, 2015; Christen, Meier, & Scherer, 

2012; Chudnovsky, Ben-Dor, & Saaroni, 2004; Ghandehari, Emig, & Aghamohamadnia, 2018; Meier, Scherer, 

Richters, & Christen, 2011; Morrison, Kotthaus, & Grimmond, 2020; Morrison et al., 2018; Morrison, Yin, et al., 2020; 

Rotach et al., 2005). Observations from this position typically cover several buildings and their surroundings for 

several days. The goal is to obtain statistically representative temperatures of the main urban surfaces (roofs, 

façades, pavements, and tree canopies) at the facet scale. Geographers and climatologists use this information to 

improve climatic models at the city scale regarding aspects such as:  

• The actual density of sensible heat flux released by buildings (Hoyano, Asano, & Kanamaru, 1999)  

• The role of thermal admittance and shading history  (Meier, Scherer, & Richters, 2010) 

• The impact of turbulences on the short-term fluctuation of urban surface temperatures (Christen et al., 

2012) 

A few studies have used thermography to assess the thermal conditions within urban canyons, crucial for pedestrian 

comfort and building energy behavior. Due to their complex logistics and the difficulty in selecting representative 

views, studies at the street level are much scarcer than platform-based investigations. Vehicle transects provide an 

effective tool to collect data over extensive areas (Asano & Hoyano, 1996; Hilland & Voogt, 2020; J. a. Voogt & Oke, 

1997). However, unlike in visible wavelengths, no automated system to conduct drive-by thermography is 

commercially available yet. In other words, there is no sort of ‘Google Street IR View’ (Phan, 2012). Therefore, most 

of the street-level works rely by now on hand-held cameras (Acuña Paz y Miño, Lawrence, & Beckers, 2020; Boiné, 

Demers, & Potvin, 2018; Garcia-Nevado, Beckers, & Coch, 2020; Hoyano et al., 1999; S. Lee, Moon, Choi, & Yoon, 

2018; Tamura, Hoyano, Hitoshi, & Asano, 2001). The use of rotating devices can help to increase the spatial coverage 

of the IR camera. This technique allows for generating spherical radiometric maps to describe urban environments 

(Acuña Paz y Miño et al., 2020; Asano & Hoyano, 1996; Hatefnia, Barakati, Ghobad, & Panah, 2017; Tamura et al., 

2001).  

The literature review above shows that, over time, the approach of the studies on 3D urban temperatures is evolving. 

Initially, the focus was on the facet-scale, and the goal was to obtain a statistical thermal sampling of the main urban 

surfaces, useful for climate models at the city scale (Christen et al., 2012; J. a. Voogt & Oke, 1997). Nowadays, this 

focus is increasingly on the sub-facet scale to correlate surface temperatures and architecture design (Acuña Paz y 

Miño et al., 2020; Garcia-Nevado et al., 2020; Hilland & Voogt, 2020; S. Lee et al., 2018; Morrison, Kotthaus, et al., 

2020). Recent studies have demonstrated that the architectural details (color, forms) can create significant 

temperature differences on individual urban facets, particularly on façades (Hilland & Voogt, 2020; Morrison, 

Kotthaus, et al., 2020) (Figure 7). These findings highlight the importance of sufficiently detailed models to ensure 

the accuracy of the energy analysis. 
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-  
- Figure 7. Map of the mobile traverses (left) carried out in (Hilland & Voogt, 2020) and example of the visible image 

(top), thermal image (middle), and classified image (bottom) obtained for a west-facing house. 
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5. Algorithms to retrieve surface temperature from satellite sensors  

As shown, satellite-based thermography is still too coarse to be useful to guide architectural interventions. However, 

the algorithms developed to retrieve surface temperature within this field can apply in thermal remote sensing at 

smaller scales, closer to the architecture domain. After explaining the basics of thermal remote sensing, this section 

provides an overview of these algorithms, and gives an example of their implementation to an airborne campaign.   

5.1 Basics of thermal satellite remote sensing 

An infrared sensor onboard a satellite measures all the radiation coming from the land surface and the atmosphere 

along its line of sight, as illustrated in Figure 8.  

 
Figure 8. Schema of the radiative transfer equation in the infrared wavelength, modified after (Z. L. Li, Tang, et al., 2013).   

 

Based on the radiative transfer equation and assuming a cloud-less atmosphere in thermodynamic equilibrium, the 

infrared radiance 𝐼𝐼𝑖𝑖  received by the sensor at the top of the atmosphere (TOA) in a certain channel 𝑖𝑖 from a particular 

view direction (𝜃𝜃,𝜑𝜑) can be written as (Eq. 1):  

𝐼𝐼𝑖𝑖  =   𝑅𝑅𝑖𝑖(𝜃𝜃,𝜑𝜑)𝜏𝜏𝑖𝑖(𝜃𝜃,𝜑𝜑)       +       𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↑(𝜃𝜃,𝜑𝜑)     +      𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖 ↑ (𝜃𝜃,𝜑𝜑) 

 ① 
Surface outgoing radiation 

term attenuated by the 
atmosphere 

The at-sensor radiance is 
the sum of three terms… 

② 
Atmospheric 

emission term 

③  
Solar diffusion 

term 
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The outgoing radiation from the land surface 𝑅𝑅𝑖𝑖  comprises not only the radiation emitted by the surface itself but 

also the radiation coming from the sun and the atmosphere and reflected by it (Eq. 2):    

𝑅𝑅𝑖𝑖 =  𝜀𝜀𝑖𝑖(𝜃𝜃,𝜑𝜑) 𝐵𝐵𝑖𝑖(𝑇𝑇𝑠𝑠)   +  [1− 𝜀𝜀𝑖𝑖(𝜃𝜃,𝜑𝜑)] 𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↓ +  [1− 𝜀𝜀𝑖𝑖(𝜃𝜃,𝜑𝜑)] 𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖 ↓  +   𝐸𝐸𝑖𝑖 cos𝜃𝜃𝑠𝑠 𝜏𝜏𝑖𝑖(𝜃𝜃𝑠𝑠,𝜑𝜑𝑠𝑠)𝜌𝜌𝑏𝑏𝑖𝑖(𝜃𝜃,𝜑𝜑,𝜃𝜃𝑠𝑠,𝜑𝜑𝑠𝑠)  

 

 

in which 𝜏𝜏𝑖𝑖  is the effective transmittance of the atmosphere; 𝜀𝜀𝑖𝑖  and 𝜌𝜌𝑏𝑏𝑖𝑖 are the emissivity and bi-directional 

reflectivity of the surface;  𝐵𝐵𝑖𝑖(𝑇𝑇𝑠𝑠) is the spectral radiance of a black-body surface at a temperature 𝑇𝑇𝑠𝑠; 𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↓ and 

𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↑ are the down and up-welling thermal radiance of the atmosphere; 𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖 ↓ and 𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖 ↑ are the down and up-welling 

solar diffuse radiance resulting from atmospheric scattering of the solar radiance; 𝐸𝐸𝑖𝑖  is the solar irradiance at the 

TOA and 𝜃𝜃𝑠𝑠 and 𝜑𝜑𝑠𝑠 are the solar zenithal and azimuthal angles. 

As the contribution of solar radiation at the TOA (𝐸𝐸𝑖𝑖) in the 8–14 μm window during both day and night and in the 

3–5 μm window at night is negligible, we can disregard the terms ③, ⑥, ⑦ in the expressions above without loss of 

accuracy (Z. L. Li, Tang, et al., 2013). By doing so, we can reformulate the at-sensor radiance as follows (Eq.3):   

𝐼𝐼𝑖𝑖  =   𝜀𝜀𝑖𝑖 (𝜃𝜃,𝜑𝜑) 𝐵𝐵𝑖𝑖(𝑇𝑇𝑠𝑠) 𝜏𝜏𝑖𝑖(𝜃𝜃,𝜑𝜑)   +   [1− 𝜀𝜀𝑖𝑖(𝜃𝜃,𝜑𝜑)] 𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↓ 𝜏𝜏𝑖𝑖(𝜃𝜃,𝜑𝜑)    +    𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↑(𝜃𝜃,𝜑𝜑) 

 
 

Once 𝐵𝐵𝑖𝑖(𝑇𝑇𝑠𝑠) is derived from Eq. 3, the inversion of the Planck’s law allows for retrieving the surface temperature as 

follows (Eq.4):  

𝑇𝑇𝑠𝑠 =
𝑐𝑐2

ln �𝑐𝑐1 + 𝜆𝜆5𝐵𝐵𝑖𝑖 (𝑇𝑇𝑠𝑠) 
𝜆𝜆5𝐵𝐵𝑖𝑖(𝑇𝑇𝑠𝑠) �

𝜆𝜆 Planck’s law inversion (Eq. 4)  
 

Where 𝑐𝑐1 and 𝑐𝑐2 are two radiant constants of value:  
𝑐𝑐1 =  2𝜋𝜋ℎ𝑐𝑐2 =  3,741832 × 10−16 W m-2 K-4; 𝑐𝑐2 =  ℎ𝑐𝑐

𝑘𝑘
=  1,438786 × 10−2 m K.  

Being: 𝑐𝑐=299.792.458 m s-1, is the speed of light in the vacuum; ℎ=6,626176 ×10-34 W s2, 
is the Planck constant; 𝑘𝑘 = 1,380662×10-23 W s K-1, is the Boltzmann constant.  

The main problem in the 𝑇𝑇𝑠𝑠 retrieval lies in the fact that the simultaneous determination of these two parameters 

from space is not possible using a passive radiometer alone because the number of unknowns to be determined is 

always larger than the number of the independent measurements (Z. Li, Petitcolin, & Zhang, 2000). Satellite sensors 

measure radiance at N wavelengths. Therefore, there will always N equations but N + 1 unknowns, corresponding 

to the N emissivities (one at each wavelength) and an unknown surface temperature. In other words, the surface 

temperature retrieval requires simultaneous retrieval of the surface emissivity and vice versa.  

Several algorithms have been proposed to solve this undetermined problem by reducing the unknowns based on 

different assumptions (José A. Sobrino & Jiménez-Muñoz, 2005). These satellite algorithms can be grouped into two 

families: those requiring a priori knowledge of the surface emissivity (Section 5.2) and those that do not (Section 

5.3). Li et al. provided a comprehensive review of the main algorithms in each family (Z. L. Li, Tang, et al., 2013). Here 

we present just a summary of these methods, highlighting those aspects useful for field works at other scales.  

Radiance emitted by the 
surface and attenuated by the 

atmosphere 

The at-sensor radiance is 
the sum of three terms… 

Radiance emitted by the atmosphere, 
reflected by the surface and attenuated 

by the atmosphere 

Radiance emitted 
by the atmosphere 

④  
Radiance 

emitted by the 
surface 

⑤ 
Down-ward radiance 

emitted by the atmosphere 
and reflected by the surface 

⑥ 
Down-ward diffuse solar 
radiance reflected by the 

surface 

⑦ 
Direct solar radiance, transmitted 
by the atmosphere, and reflected 

by the surface 
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5.2. Retrieval with known emissivity  

If the emissivity is known, the retrieval of the surface temperature is possible by three kind of methods: single-

channel, multi-channel, and multi-angle methods.  Table 2 summarizes the main features of these algorithms.  

Single-channel methods  
Single-channel methods retrieve surface temperature by applying Equation 1 to the radiance measured by the satellite 
sensor in a single channel (around 10 μm) after correcting the atmospheric effects (attenuation, scattering and self-
emission). The best wavelength depends on the atmospheric water vapor, and varies from 11 μm to 10.5 μm when the 
water vapor varies from 1 g/cm2 to 4 g/cm2 (José A. Sobrino & Jiménez-Muñoz, 2005).  

Several radiative transfer models are available to simulate such effects (e.g., MODTRAN, LOWTRAN). They necessitate 
accurate information of atmospheric profiles at the satellite overpass, an almost impossible requirement to meet in most 
cases. Approximations are possible from ground-based radio soundings, satellite vertical soundings or meteorological 
forecasting models. The latter option seems to provide the better compromise in terms of accuracy and spatial coverage 
of data. Alternative approaches derive this data from empirical correlations with near-surface measurements.   

Example from (José A. Sobrino & Jiménez-Muñoz, 2005)*:      

𝑇𝑇𝑠𝑠 =  𝑇𝑇𝑖𝑖 + (1−  𝜀𝜀𝑖𝑖)
 𝜀𝜀𝑖𝑖

 {𝐿𝐿𝑖𝑖(𝑇𝑇𝑖𝑖)−  (1 −  𝜏𝜏𝑖𝑖)[𝑇𝑇𝑎𝑎 + 𝐿𝐿𝑖𝑖(𝑇𝑇𝑖𝑖) − 𝑇𝑇𝑖𝑖]} + (1− 𝜏𝜏𝑖𝑖 )
 𝜀𝜀𝑖𝑖𝜏𝜏𝑖𝑖

   

Where 𝑇𝑇𝑎𝑎 is the atmospheric temperature; 𝐿𝐿𝑖𝑖(𝑇𝑇𝑖𝑖) is a parameter given by:  

 

* For a generalized single-channel algorithm, see (Jiménez-Munoz & Sobrino, 2003)       

Multi-channel method  
Multichannel methods retrieve surface temperature by applying Equation 1 to two channels located in the thermal 
spectral range (~ from 10 to 12 μm). The so-called split-window algorithms (SW) retrieve LST using a linear or non-linear 
combination of the top-of-atmosphere (TOA) brightness temperatures from two different channels (e.g., 10 and 12.5 μm). 
These methods utilize the differential atmospheric absorption in several adjacent channels to obtain LST data without 
information about the atmospheric profiles at the time of the acquisition. Each specific method defines their own 
coefficients 𝑎𝑎𝑛𝑛  to parametrize aspects such as the total column water vapor in the atmosphere (WV) and the viewing 
zenith angle (VZA).  

Algorithms using three or more TIR channels are also available. Some of them include also MIR channel to improve 
atmospheric corrections during nighttime. Increasing the number of channels may increase the accuracy of the method, 
but it comes with the expense of increased measurement error due to instrumental noise and emissivity uncertainties in 
other bands. Notice that the range of emissivity values and their uncertainty for natural or man-made surfaces is 
significantly higher for MIR and 8.7 μm channels than for the most commonly used SW channels (Trigo, Peres, DaCamara, 
& Freitas, 2008).  

Example of linear SW (Z. L. Li, Tang, et al., 2013):       𝑇𝑇𝑠𝑠 =  𝑎𝑎0 +  𝑎𝑎1𝑇𝑇𝑖𝑖 +  𝑎𝑎2�𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑗𝑗�  

where 𝑎𝑎𝑛𝑛 are coefficients that depend on the spectral response function of the two channels 𝑔𝑔𝑖𝑖(𝜆𝜆) and 𝑔𝑔𝑗𝑗(𝜆𝜆), the emissivity in the two 
channels, the WV and the VZA; 𝑇𝑇𝑖𝑖  and 𝑇𝑇𝑗𝑗  are the brightness temperatures measured in the two channels.  

Multi-angle method  

Similar to the split-window method, the multi-angle method is based on differential atmospheric absorption when the 
same object is observed from different viewing angles due to the different path-lengths. Accurate geometric registrations 
between images are crucial for this method. It does not need an accurate profile of atmospheric profiles, but it requires a 
priori knowledge on the angular variations of materials, not always available.  

Example from (Z. L. Li, Tang, et al., 2013):      

𝑇𝑇𝑠𝑠 =  𝑇𝑇𝑛𝑛 + 𝑝𝑝1�𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑓𝑓� + 𝑝𝑝2 + 𝑝𝑝3(1 −   𝜀𝜀𝑛𝑛)  + 𝑝𝑝4�𝜀𝜀𝑛𝑛 −   𝜀𝜀𝑓𝑓�     

Where  𝑇𝑇𝑛𝑛 and 𝑇𝑇𝑓𝑓 are the brightness temperatures measured in the nadir and forward views; 𝜀𝜀𝑛𝑛 and 𝜀𝜀𝑓𝑓  are the emissivity in these two 
directions;  𝑝𝑝𝑛𝑛 are coefficients related to the atmospheric transmittances and mean equivalent air temperatures in the two views.  

Table 2. Methods to retrieve surface temperature with known emissivity. 
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In practice, the optimal method depends on the characteristics of the sensor, the availability (and reliability) of 

emissivity and atmospheric data, the complexity of the approach, and other considerations. For instance, multi-

angle methods are only applicable when IR imagery is simultaneously available from two different views, a piece of 

information only provided by few satellite sensors, such as the ATSR (existing) or the SPECTRA (planned).  

When comparing the three methods with known emissivity, Sobrino and Jiménez-Muñoz (2005) concluded that: 

• Single-channel methods provide similar - or even better - results with low atmospheric water vapor 

contents than split-window and dual-angle algorithms.  

• On a global scale, split-window and dual-angle algorithms provide better results than single-channel 

methods because the latter performs poorly with high water vapor contents.  

• Dual-angle algorithms have slightly better results than split-window, though they have two major 

operational drawbacks: (1) the angular dependence of emissivity is not well-known (2) they need a good 

registration between the nadir and forward pixels.  

Objects observed under different angles may exhibit different temperatures due to the three-dimensional nature of 

land surfaces, making registration impossible over complex surfaces. Therefore, multi-angle methods are only 

suitable for homogeneous areas (e.g., sea surface) under ideal atmospheric (i.e., without clouds).  
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5.3. Retrieval with unknown emissivity  

In practice, the heterogeneity of the surface and the angular and spectral variation of the LSE makes it challenging 

to accurately determine the emissivity at the satellite pixel scale in advance. Over time, three approaches to retrieve 

LST if the emissivity is not known appeared: stepwise retrieval, simultaneous LST and LSE retrieval methods with 

known atmospheric information, and simultaneous retrieval of LST, LSEs, and atmospheric profiles (Table 3).  

 
 

Stepwise retrieval methods 
In the stepwise retrieval methods, the emissivity is determined in the first place, and then the LST is estimated using any 
of the previous methods. There are two alternatives to estimate emissivity.  

The first is determining the emissivity (semi-)empirically from VNIR measurements that help to classify surfaces into 
classes with known emissivity values. For example, in the classification-based emissivity method (CBEM), surfaces are 
classed into land cover types; in the NDVI-based method, into soil types. Notice that the accuracy of these approaches 
depends on the accuracy in the classification and on the knowledge of the emissivity values associated to each class.  

The second alternative to estimate emissivity is the use of pairs of atmospherically corrected MIR and TIR radiances at 
ground level. This is the approach taken in the day/night TISI-based method (Becker & Li, 1990). This technique calculates 
temperature-independent spectral-indices (TISI) for the TIR and MIR channels, and estimates emissivity assuming that 
these indices should remain constant over time. This method performs better than the two previously mentioned. 
However, it requires day & night data observed under similar observation conditions, as well as accurate image co-
registration and atmospheric corrections in MIR and TIR channels. 

Simultaneous retrieval of LST and ε with known atmospheric data 
If the atmospheric information is available, it is possible to retrieve LST and LSE simultaneously by increasing the temporal 
or spectral data available to reduce the unknowns or increase the number of equations.  

The multi-temporal methods use measurements at different times assuming that the spectral emissivity is time-invariant. 
The two main methods in this category are the two-temperature method (TTM) (Watson, 1992), which uses one channel, 
and the physics-based day/night operational method (D/N), which uses MIR and TIR channels.  

In the multi-spectral methods, the assumption concerns the intrinsic spectral behavior of emissivity. For example, the gray 
body emissivity method (GBE) assumes that the emissivity has a flat spectrum in a certain interval, usually for wavelengths 
larger than 10 μm (Z. L. Li, Wu, et al., 2013); while the temperature emissivity separation (TES) method assumes that 
there is a spectral contrast in emissivity (Alan Gillespie et al., 1998; AR Gillespie, Rokugawa, Hook, Matsunaga, & Kahle, 
1999). With the popularization of hyperspectral sensors, the TES algorithm has become one of the most widespread 
methods. See its requirements and limitations in Annex 2. 

A simplified version of the GBE model (Artis & Carnahan, 1982):  𝜀𝜀 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛼𝛼�𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖�  𝑇𝑇𝑗𝑗𝑇𝑇𝑖𝑖�𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑖𝑖�� � 
Where 𝑇𝑇𝑖𝑖  and 𝑇𝑇𝑗𝑗  are the brightness temperatures measured in the two channels, with wavelength 𝜆𝜆𝑖𝑖  and 𝜆𝜆𝑗𝑗;  𝛼𝛼 is a constant 
involving the Planck’s (ℎ) and Boltzmann’s (𝐾𝐾) constants and the speed of light (𝑐𝑐): 𝛼𝛼 =  ℎ𝑐𝑐/𝐾𝐾 (1.438 ×  10−2 𝑚𝑚𝐾𝐾). 

Simultaneous retrieval of LST, ε and atmospheric profiles 

Finally, it is also possible to retrieve surface temperature with unknown emissivity and atmospheric data. These new 
methods take advantage on the narrow bandwidth offered by hyperspectral TIR sensors with thousands of channels. The 
representatives of these methods are the artificial neural network (ANN) method (Wang et al., 2010) and the two-step 
physical retrieval method (Ma et al., 2002, 2000). These methods are more complex to perform and their results, harder 
to interpret. 

 

Table 3. Methods to retrieve surface temperature with unknown emissivity. 
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A possible contribution of the previous satellite algorithms could be an adaptation of the CBE methods to image-

segmentation of ground-based thermography, currently done manually or by surface orientation. For satellite 

datasets, the TISI and TES methods seem to exhibit slightly better behavior than the others (Z. L. Li, Wu, et al., 2013). 

An adaptation of the GBE method could be also interesting, but it could be troublesome in the some metallic and 

non-metallic materials (Kotthaus, Smith, Wooster, & Grimmond, 2014). In any case, to test the potential of these 

methods in ground-based observations, these should provide multispectral thermal data (instead of single 

broadband measurements).  

5.4. Applying satellite algorithms to airborne TIR campaigns: the DESIREX example 

Methods to retrieve surface temperature with unknown emissivities are commonly used in satellite-based studies. 

In contrast, these techniques are seldom implemented in studies at smaller scales, except for some punctual 

airborne-based studies. This is the case of the DESIREX campaign described below.  

The Dual-use European Security IR EXperiment (DESIREX) was a measurement campaign of the European Space 

Agency conducted in Madrid between June 23 and July 6, 2008. The aim was to generate thermal datasets as input 

to the TIR sensor to address upcoming trade-off studies (e.g., The Urban Heat Islands and Urban Thermography 

Project, or UHI&UT). The campaign included airborne and ground-based hyperspectral measurements and 

atmospheric data (Ta, RH, radiosondes). The airborne sensor was an 80-band AHS radiometer, which covers the 

visible and near-infrared (VNIR), shortwave infrared (SWIR), mid-infrared (MIR), and thermal infrared (TIR) ranges. 

The ground-based sensor was a radiance-based radiometer with 6 TIR bands between 8–13 μm.  

Within the framework of this project, Oltra-Carrió et al. (2012) compared three different methodologies to retrieve 

urban surface emissivity: the NDVI thresholds method, the temperature-and-emissivity separation (TES) algorithm, 

and the temperature-independent spectral indices (TISI) algorithm. Additionally, they used local data at four sites to 

assess the performance of these methods (Figure 9).   

 
Figure 9. Detailed and general views of the sites selected for validation of airborne data against ground-based measurements in 

the DESIREX campaign [Elaborated from: (Oltra-Carrió et al., 2012)]. 
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Over artificial urban surfaces, TES and TISI showed better agreement with in-situ data than NDVI.  TES algorithm 

reproduces better LST over the studied area without needing high temporal resolution of the sensor. However, TES 

algorithms fail over certain kinds of surfaces, particularly metallic ones.  

Sobrino et al. (2012) proposed an alternative to overcome this limitation of the TES method by combining it with a 

classification-based approach (CBEM). First, urban surfaces are classed into categories. Then, the TES algorithm is 

applied to those classes where the algorithm provides satisfactory results (see Annex 2). Finally, values extracted 

from spectral libraries (http://speclib.jpl.nasa.gov) are assigned to the rest of the classes. Notice that the selected ε-

spectra may be somewhat arbitrary since spectral libraries include “representative” samples, while surfaces over 

the city can be highly variable. Based on this hybrid method, Sobrino’s team could generate an emissivity map of an 

extensive urban area of Madrid (Figure 10).  

 
Figure 10. AHS imagery of Madrid on 4 July 2008 at 11:30 GMT (left) and emissivity map using the classification-based approach 

between 8 and 13 µm (right). Elaborated from: (J. A. Sobrino et al., 2012). 
 

The DESIREX campaign highlighted the crucial impact of emissivity on the accuracy of the retrieved surface 

temperature. Sobrino et al. reported that the difference in surface temperature obtained from corrected and un-

corrected emissivity data was up to 4 K (J. A. Sobrino et al., 2012). Oltra-Carrió et al. show differences of up to 3 K 

depending on the method used to retrieve emissivity (Oltra-Carrió et al., 2012).  

 

  

http://speclib.jpl.nasa.gov/
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6. From satellite to ground-based thermography corrections  

Two types of corrections are necessary to retrieve the actual surface temperatures (𝑇𝑇𝑠𝑠) from remote sensing data. 

The first correction aims to remove the atmospheric effects; the second aims to account for the emissivity effects. 

Though common in satellite studies, such tasks are not routinely applied in ground-based TIR imagery. Satellite 𝑇𝑇𝑠𝑠 

retrieval procedures are not directly applicable because of the unique challenges posed by perspective views over 

complex urban geometries (Hammerle, Meier, Heinl, Egger, & Leitinger, 2017)(Morrison, Yin, et al., 2020).  

Unlike in satellite studies, the distances between the sensor and the different parts of the scene (𝑍𝑍𝑝𝑝𝑎𝑎𝑎𝑎ℎ) may 

significantly vary in ground-based imagery, so do the atmospheric effects. Corrections treating 𝑍𝑍𝑝𝑝𝑎𝑎𝑎𝑎ℎ as a constant 

can result in over or underestimations of surface temperature. These errors can be non-negligible because 

atmospheric correction can be significant over relatively short path lengths (e.g., up to 3 K in 155 m (Morrison, Yin, 

et al., 2020)). Atmospheric effects are particularly noticeable with large differences in surface-to-air temperature, a 

typical situation in urban environments during the day (Meier et al., 2011; J. A. Voogt & Oke, 2003). The use of 3D 

models and computer vision techniques allows for more accurate 𝑍𝑍𝑝𝑝𝑎𝑎𝑎𝑎ℎ computation that makes it possible pixel-

by-pixel atmospheric corrections using radiative models such as MODTRAN (Meier et al., 2011; Morrison, Yin, et al., 

2020).  

The emissivity-related corrections involve quantifying two aspects: the emissivity and the reflected radiance across 

the observed surfaces. These tasks differ between satellite and ground-based remote sensing:  

• Satellite-based studies usually use emissivities obtained using a per-pixel approach (i.e., effective emissivity). 

In contrast, ground-based observations require a per-object approach (Yang, 2011). Ground-based studies 

usually classify surfaces and associate an emissivity value to each class manually, a time-consuming task. 

Therefore, studies tend to oversimplify the number of classes, even assigning a single emissivity for the entire 

scene. In reality, the emissivity of urban surfaces can be highly variable (Kotthaus et al., 2014). Moreover, the 

existing spectral libraries1 do not adequately cover the immense diversity of urban materials, particularly in 

metals (Figure 11). Automatic classification algorithms and methods to retrieve 𝑇𝑇𝑠𝑠 without a priori knowledge 

of emissivity are available for satellite/airborne remote sensing (Section 5.3), but they are not for ground-based 

studies.  

 
Figure 11. Spectral emissivity of three impervious urban materials. Source: (Kotthaus et al., 2014). 

                                                                 
1 Two reference spectral libraries are ASTER (Baldridge, Hook, Grove, & Rivera, 2009) (https://speclib.jpl.nasa.gov/) and SLUM 
(Kotthaus et al., 2014) (https://urban-meteorology-reading.github.io/SLUM). The latter work provides data from 74 samples 
collected using field-portable spectrometers in controlled laboratory conditions with methodologies applicable to outdoors. 

https://speclib.jpl.nasa.gov/
https://urban-meteorology-reading.github.io/SLUM
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• The radiation reflected by urban surfaces sensor may come from the sky vault and other urban surfaces. 

Satellite RS corrections usually do not account for the second contribution based on the assumption that at the 

pixel scale the land is approximately a flat surface (see Eq.3 from Section 5.1). At the typical ground-based RS 

scales, urban geometry is an important influence on scattered radiation from the sky and canopy elements 

(Figure 12).  

 
Figure 12. Modeling of the radiation reflected by urban surfaces in ground-based (left) vs satellite observations (right) 

modified after (Z. L. Li, Tang, et al., 2013) .  
 

Given the complexity of these scattering processes, many studies opt for assuming that all surfaces behave as 

black-bodies, working in terms of brightness temperatures (Christen et al., 2012; Garcia-Nevado et al., 2020; J. 

a. Voogt & Oke, 1997). Some airborne and ground-based studies have used the Sky View Factor (𝑆𝑆𝑆𝑆𝑆𝑆) to 

approximate the multiple scattering of radiation in urban geometries, as exemplified in Eq.5 (Adderley et al., 

2015):  

𝑅𝑅𝑟𝑟𝑟𝑟𝑓𝑓𝑠𝑠𝑟𝑟𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟 ↑ = (1 − 𝜀𝜀𝑖𝑖) �𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↓ + (1 − 𝑆𝑆𝑆𝑆𝑆𝑆) 𝜎𝜎 𝑇𝑇𝑟𝑟𝑛𝑛𝑒𝑒4  �       (Eq. 5) 

 

These approaches assume that all surfaces are Lambertian, atmospheric irradiance is isotropic (𝑅𝑅𝑎𝑎𝑎𝑎𝑖𝑖 ↓), and the 

surrounding urban facets all have a uniform surface temperature (𝑇𝑇𝑟𝑟𝑛𝑛𝑒𝑒), equal to the air o the average 

brightness temperature of the surroundings. The isothermal assumptions for the sky and surroundings 

introduce uncertainties that could be larger than the ones due to the choice in material emissivity (up to 0.3K), 

as shown in (Morrison, Yin, et al., 2020). The explicit consideration of thermal reflections, very rare in ground-

based thermography (Morrison, Yin, et al., 2020), requires solving the complete heat transfer problem between 

the urban surfaces and the sky.   
 

All in all, most of the ground-based TIR studies typically neglect atmospheric effects on their observations (Morrison, 

Kotthaus, et al., 2020), except for Meier’s works (Meier, 2011).To our best knowledge, only one ground-based study 

has accounted for both the atmospheric and emissivity corrections in detail over a complex urban geometry 

(Morrison, Yin, et al., 2020). This work exploits the capabilities of the Discrete Anisotropic Radiative Transfer Model 

(DART), released in 1996 and updated since then by Gastellu-Etchegorry’s team (Gastellu-Etchegorry, Grau, & Lauret, 

2012). DART allows for simulating 3D radiative transfer processes from visible to thermal infrared wavelengths in 
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natural and urban landscapes using a ray-tracing approach (“DART,” n.d.). The prerequisite to run simulations is the 

availability of a 3D urban model discretized into voxels. In this case, photogrammetric techniques were used on 

Google Earth imagery to create a highly detailed urban model that includes vegetation and buildings. Figure 13 

illustrates the impact of the pixel-by-pixel correction of atmospheric and emissivity effects on 𝑇𝑇𝑠𝑠. 

 

 
Figure 13. Ortoimage of the study site, aerial and detailed views of the corresponding urban model (a, b, c) in (Morrison, 

Kotthaus, et al., 2020; Morrison, Yin, et al., 2020). 
Brightness temperatures from the six thermal cameras before corrections,  𝑇𝑇𝑏𝑏𝑐𝑐𝑎𝑎𝑐𝑐 (d).  

Difference in brightness tempertures before and after the atmospherical corrections,  𝑇𝑇𝑏𝑏
𝑠𝑠𝑠𝑠𝑟𝑟𝑓𝑓 (e).  

Difference in tempertures before and after the emissivity corrections for ε=0.93,  𝑇𝑇𝑠𝑠𝜀𝜀=0.93  (f)   
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7. Challenges for future ground-based thermal remote sensing 

Corrected ground-based thermography has potential applications in different fields, namely: the estimation of 

complete urban surface temperatures, the evaluation of building and urban energy balance models, ground-truthing 

of airborne or space-borne measurements, the assessment of the directional anisotropy of LWIR radiation, 

simulation calibrations within urban projects, and development of urban material databases. The full exploitation of 

the possibilities of this remote sensing approach requires addressing three challenges:   

 

• Re-definition of measurement protocols. Ground-based thermography usually consists of measurements in a 

single broad waveband, typically between 7 and 14 µm. A shift towards TIR imagery in several narrow wavebands 

(e.g., 4 TIR channels) would allow the adaptation of the satellite algorithms to retrieve 𝜀𝜀 and 𝑇𝑇𝑠𝑠 simultaneously 

to the context of ground-based measurements (e.g., TES-like algorithms). Another critical issue is the suitable 

measurement timing to find a trade-off between data availability and post-processing requirements. The 

requirements of multi-temporal methods could offer a guide in this regard (Section 5), but day and night data 

are both necessary. Also, there are technical issues to solve, such as the calibration and housing of longwave 

infrared cameras for outdoor settings (Morrison, Yin, et al., 2020).  

 

• Emissivity-related issues. Research on the angular emissivity behavior has focused on natural surfaces (i.e., 

water, ice, crops) rather than on artificial materials, dominant in urban settlements. Observations from towers 

and platforms may provide consistent TIR multi-angle datasets to address this question. In addition, multi-

reflections within concave geometries can result in an effective increase in emissivity (Peeters, Ribbens, Dirckx, 

& Steenackers, 2016). More studies at the street level in the line of (Beckers & Garcia-Nevado, 2019) are 

necessary to investigate these effects in some urban forms, such as narrow urban canyons. Another open 

question concerns the degree of specularity of urban materials in IR wavelengths (from SWIR to LWIR). Specular 

thermal reflections over glass surfaces are evident, and their modeling can be critical in curve geometries 

(“Walkie Talkie architect ‘didn’t realise it was going to be so hot,’” 2013). However, their role in other common 

urban materials is still unclear. By now, the common practice is to consider all surfaces as Lambertian thermal 

emitters, even though directional modeling and measure are technically possible (“DART,” n.d.; Ianiro & Cardone, 

2010). Another worth-exploring path is the need for increasing the number of thermal bands considered in 

thermal simulations. This subject requires further research on the spectral behavior of urban materials (Kotthaus 

et al., 2014).  

 

• Increase in the level of detail of the urban model. As shown in this report, the most significant advances in 

ground-based thermography correction were possible thanks to the combination of complementary radiative 

simulations and highly detailed geometrical models (Meier et al., 2011; Morrison, Yin, et al., 2020). In contrast, 

simplistic models are still the norm in urban climate studies, despite the fact the computational limitations of the 

past are now vanishing (e.g., Figure 14). As observations can be made of the complete 3D urban skin, a 

description of the material composition of the vertical surfaces is particularly important. The first step would be 

the differentiation of glasses from opaque surfaces. If glass emissivity is unaccounted for, wall temperatures may 

be overestimated in ground observations (Morrison, Yin, et al., 2020). Also, sidewalks affected by glass reflections 



25 
 

can be hotter than the others by several degrees [up to 4.7 ◦C in (Naughton & McDonald, 2019)]. An option to 

increase the model semantics would be using reconstruction techniques that incorporate automatic window 

detection (Lee and Nevatia 2004). Since reconstructed models are usually hard to manage and edit (Aliaga, 2013), 

procedural modeling could be an alternative that would also bring the possibility of simulating non-existing 

scenarios.  

 

 
Figure 14. Aerial view of the case study area (a) and corresponding computational grid (b, c) in (Antoniou et al., 2019).  

Aerial thermography vs CFD simulation results (e, f).  
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8. Conclusion 

Thermal remote sensing has played a central role in urban climate studies, especially in the Urban Heat Island 

domain. Since the ‘70s, an astonishing number of papers using thermal remote sensing from satellite sensors 

appeared. In comparison, studies relying on airborne and, even more, ground-based thermography are far more 

limited.  

Satellite-based thermal studies are rarely applicable to architectural interventions. The first reason is that their 

temporal and spatial resolutions do not match those concerning the architecture scale. The coarse resolution of 

satellite sensors allows for assessing some dynamics of urban climates, such as detecting spatial thermal patterns 

related to changes in land cover due to urbanization. However, project decision-making requires knowledge about 

the thermal responses of individual building components, only possible with higher resolution sensors. The revisit 

times and spatial resolutions of thermal data from aircrafts such as helicopters and airplanes, though an 

improvement, seem to remain insufficient for architectural purposes. Drone and ground-based remote sensing are 

potentially more suitable in this sense. Also, these close-by observations help to overcome the second drawback of 

satellite-datasets for architectural purposes: the lack of information about façades. This report shows that these two 

remote sensing approaches are still in their infancy compared to the satellite domain: few studies, excessive manual 

work, and poor spectral resolution.  

Regardless of the chosen approach, atmospheric and emissivity corrections are necessary to retrieve surface 

temperatures from remote sensing data. How to perform these corrections in urban ground-based IR imagery 

remains an open question insofar. This report shows that the availability of 3D urban models with the appropriate 

geometric and semantic level of detail is crucial for this purpose.  

A highly detailed geometry allows for accurate path-length computations, increasing this way the accuracy of 

atmospheric corrections. Also, it allows for accurate computations of view factors among surfaces (instead of SVF-

based proxies) that improve the corrections of the reflected radiation calculated with radiative models (e.g., DART). 

Up until now, the major obstacle for ground-based observations is the individual assignment of emissivities to the 

observed surfaces. The practice that prevails is setting one single emissivity for the entire model, disregarding any 

directional effect. These shortcomings are not due to technical issues or lack of physical models (algorithms for the 

visual wavelengths are available) but to the lack the input data.   

In this context, a rethink of the satellite methods to retrieve surface temperature with unknown emissivity could be 

of particular interest. Some of these algorithms were already tested on airborne datasets with promising results. We 

found no examples during this review of their implementation on ground-based observations (usually based on 

observations in a single broad waveband between 8-14 µm). Hyperspectral high-resolution imagery yields the 

potential for detailed and comprehensive mapping of urban surface materials. However, new measurement 

protocols for ground-based thermography are necessary. 
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ANNEX 1:  Summary of TIR sensors and satellites.  

Satellite Orbit Swath 
Temporal 
Coverage 

 

Free 
since… Sensor (Name) Spectral Bands 

(µm) Spatial Resolution Temporal 
Resolution 

Satellite Radiance 
Data Access 

Land Surface 
Temperature Data 

Products 

Landsat 4a  
Landsat 5  
Landsat 7  
Landsat 8 

Polar (10 am/pm) 185 km 

7/1982 -12/1993 
3/1984 - 01/2013 
4/1999 - Present 
02/2013 - Present 

2008 

TM  
 
ETM+  
TIRS 
 
OLI 

Thematic Mapper 
 
Enhanced Thematic Mapper 
Thermal Infrared Sensor  
 
bOperational Land Imager 

10.40 - 12.50  
 
10.40 - 12.50  
10.6 - 11.19  
 
11.50 - 12.51 

120 m (30 m resampled)  
 
60 m (30 m)  
100 m 
  
100 m 

16 days https://earthexplo
rer.usgs.gov/ 

https://www.usgs.gov/
media/files/landsat-
provisional-surface 
-temperature-product-
guide 

Terra & Aqua  
 

Polar: (Terra & Aqua) 
10:30 & 1:30 am/pm  2330 km 12/1999 - Present 

04/2002 - Present 2002? MODIS   MODerate-resolution Imaging 
Spectroradiometer Advanced 

10.78 - 11.28  
11.77 - 12.27 1 km 12 hours https://modis.gsfc

.nasa.gov/tools/ 

https://modis.gsfc.nas
a.gov/data/dataprod/
mod21.php 

Terra 10:30 am/pm   60 km 12/1999 - Present 2016 ASTER  
Advanced Spaceborne Thermal 
Emission and Reflection 
Radiometer 

10.25 - 10.95  
10.95 - 11.65 90 m 12 hours 

https://lpdaac.usg
s.gov/products/as
t_09tv003/ 

https://lpdaac.usgs.gov
/products/ast_08v003/ 

International Space 
Station/ 
ECOsystem 
Spaceborne Thermal 
Radiometer 
Experiment on Space 
Station (ECOSTRESS) 

Varying  385 to 415 
km 06/2018 - Present 

 

PHyTIR   Prototype HyspIRI Thermal 
Infrared Radiometer 

8.28, 8.79, 9.06, 
10.5, 12.05 

60 m  
CONUS only 

varies/ 
every few 
days 

https://ecostress.j
pl.nasa.gov/data 

https://lpdaac.usgs.gov
/products/eco2lstev00
1/ 

*Suomi National Polar 
Partnership 
(NSPP) 
Joint Polar Satellite 
System-1 (NOAA 
20) 

Polar, 1:30 am/pm  3000 km 10/2011 - Present 
11/2018 - Present 

 

VIIRS   Visible Infrared Imaging 
Radiometer Suite 

10.26 - 11.26  
11.54 - 12.49 750 m 12 hours 

https://ladsweb.m
odaps.eosdis.nasa
.gov/ 

https://viirsland.gsfc.n
asa.gov/Products/NAS
A/LSTESDR.html 

NOAA Operational 
Series 
Current: NOAA 
15,18,19 
ESA- Metop-A & B 

Polar, 2:00 am/pm  2900 km 1979 - Present 

 

AVHRR   Advance Very High-Resolution 
Radiometer 

10.30 - 11.30  
11.5 - 12.50 1 km & 4 km  

https://www.ncdc
.noaa.gov/cdr/fun
damental/avhrr-
radiances-nasa 

 

NOAA Geostationary 
Operational 
Environmental 
Satellites (GOES) 
Current: GOES-16 & 
GOES-17 

Geostationary  
10-min Image Updates  
1975 - Present 

 

VISSR 
ABI  Advance Baseline Imager 

10.10 - 10.60  
10.80 - 11.60  
11.80 -12.80  
13.0 - 13.6 

2 km  
CONUS and Full Disk 

minutes, 
hours, 
day/night 

https://www.bou.
class.noaa.gov/sa
a/products/search
?datatype_family
=GRABIPRD  

https://www.avl.class.
noaa.gov/saa/products
/search?datatype_fami
ly=GRABIPRD 

ESA - Sentinel 3A & 3B Polar, 10 am/pm  > 740 km 02/2016 - Present 
04/2018 - Present 

 SLSTR  Sea and Land Surface 
Temperature Radiometer 

10.45 - 11.24  
11.57 - 12.48 1 km  12 hours https://scihub.cop

ernicus.eu/dhus/#
/home 

 

ESA - Sentinel 2A & 2B Polar, 10:30 am/pm  290 km 07/2015 - Present 
03/2017 - Present 

 MSI cMultiSpectral Instrument     

 

a Landsats 1, 2, and 3 had a Multi Spectral Scanner that did not have thermal IR bands. b Used for land cover/NDVI/impermeable surface. c Used for land cover. In gray, data with potential application for urban interventions.  
Satellite Radiance and Derived Products Data Search (Source: https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf)    
Other sources of:  https://earthdata.nasa.gov/      ||||    https://earthexplorer.usgs.gov/  

https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GRABIPRD
https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GRABIPRD
https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GRABIPRD
https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GRABIPRD
https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GRABIPRD
https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf
https://earthdata.nasa.gov/
https://earthexplorer.usgs.gov/
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ANNEX 2: Comments on the TES algorithm and its accuracy 

The Temperature and Emissivity Separation (TES) algorithm was originally developed to provide with high accuracy 

LST (±1.5 K) and ε (±0.015) information from satellite data (Alan Gillespie et al., 1998). Nevertheless, this approach 

is also applicable to ground-based measurements acquired with thermal multiband radiometers (J. A. Sobrino et al., 

2012).   

This method starts from an initial emissivity guess for all pixels and channels and uses an empirical relationship that 

allows estimating the minimum emissivity of the spectrum by taking into account the spectral contrast, thus to 

obtain the emissivity for all channels (Oltra Carrió, 2013).  

The TES algorithm is composed by three modules (AR Gillespie et al., 1999): NEM (Normalized Emissivity Method), 

RATIO and MMD (Maximum–Minimum Difference). The NEM module includes an iterative procedure which provides 

a first guess for LST/ε from atmospherically corrected thermal radiance, sky irradiance and an initial value of ε based 

on the radiative transfer equation. The RATIO module obtains relative emissivities by rationing the NEM emissivities 

to their average value. Finally, the MMD module scales the emissivity spectra in order to provide the final values for 

LST and ε.  

The key part of TES algorithm is the MMD module. It relies on an empirical relationship between spectral contrast 

(MMD) and minimum emissivity (εmin) determined from laboratory and/or field emissivity spectra according to the 

following expression: εmin = a + b × MMDc. Accordingly, the TES algorithm provide satisfactory results only over 

surfaces with ε spectra that meet this εmin– MMD relationship. This is not the case of surfaces with low spectral 

contrast, such as water and green vegetation.  

The following figure depicts the εmin–MMD relationship over manmade materials to assess the performance of TES 

algorithm over urban areas. It can be seen that abundant urban surfaces, such as concrete or asphalt, meet this 

relationship. Therefore, accurate results are expectable over these materials when applying the TES algorithm. 

However, some artificial surfaces, mainly highly reflective metals, do not follow the εmin–MMD relationship and, 

thus, TES algorithm will not provide satisfactory results. There are other methodologies to obtain land surface 

parameters of these materials (e.g., Malaplate et al. (2001) using information from 3 µm to 5 µm and alternate 

measurements under sun and shade.   

 
Figure 15. Source: (J. A. Sobrino et al., 2012) 
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